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Abstract

The rate at which fully facetted nonequilibrium shaped particles and pores approach their
equilibrium (Wulff) shape via surface diffusion was modelled, and calculations relevant to alumina
were performed to guide experimental studies. The modelling focusses on 2-d features, and considers
initial particle/pore shape, size, surface energy anisotropy, and temperature (surface diffusivity) as
variables. The chemical potential differences driving the shape change are expressed in terms of facet-
to-facet differences in weighted mean curvature. Two approaches to modelling the surface flux are
taken. One linearizes the difference in the mean chemical potential of adjacent facets, and assumes
the flux is proportional to this difference. The other approach treats the surface chemical potential as
a continuous function of position, and relates the displacement rate of the surface to the divergence of
the surface flux. When consistent values for the relevant materials parameters are used, the
predictions of these two modelling approaches agree to within a factor of 1.5. As expected, the most
important parameters affecting the evolution times are the cross-sectional area (volume in 3-d) and
the temperature through its effect on the surface diffusivity. Pores of micron size are predicted to
reach near-equilibrium shapes in reasonable times at temperatures as low as 1600°C. The detailed
geometry of the initial nonequilibrium shape and the Wu l ff shape appear to have relatively minor
effects on the times required to reach a near-equilibrium shape.
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Introduction

The shape changes undergone by solid particles, and by precipitates and cavities (pores) within

solids constitute an important element of microstructural evolution in materials. Such morphological

changes are evident during sintering, and more generally, occur whenever materials are held at elevated

temperatures for prolonged periods. The mass flows responsible for these shape changes can occur

predominantly through the vapor phase, through the bulk, along a solid-vapor interface (a surface) or along

a solid-solid interface (a grain boundary). The rate of shape change can be limited by the rate of mass

arrival via gas, bulk, surface, or grain boundary diffusion. Alternatively, the shape change rate can be limited

by the rate at which mass can be incorporated at a mass sink or can be released or supplied by a mass

source. The general term surface-attachment-limited kinetics (salk) is used in this paper to refer to such

situations, in which the rate of a nucleation step or of an attachment/detachment step limits the shape

change rate.

Models treating a variety of diffusion-rate-limited shape changes in idealized materials with

isotropic surface energies were developed during the 1950’s and 1960’s. These included treatments of

surface (scratch) smoothing [1], grain boundary grooving [2], particle sintering [3-5], and Rayleigh

instabilities of solid rods and cylindrical cavities in solids [6]. These models served two important roles. In

cases where the relevant transport data were available, the models could be used in a predictive manner. In

cases where transport data were absent, the experimental results could be evaluated using these models to

provide needed transport data. Most of the surface diffusion data available for ceramic systems has been

inferred from rates of morphological change assumed to be controlled by surface diffusion.

Subsequent treatments of the aforementioned processes have focussed on extending their range of

applicability, and examining the behavior of less idealized systems. Accordingly, some efforts have focussed

on evaluating the effects of higher-order (nonlinear) terms on the predictions of the models and improving

the accuracy of predictions for more advanced stages of these processes [e.g., 7, 8]. Others have focussed on

the effects of more complex initial or other boundary conditions on the predicted behavior [e.g., 9, 10]. In

general, these analyses have retained the assumption of isotropic surface energy.
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Other modelling efforts have focussed on incorporating the effects of surface energy anisotropy on

morphological evolution. For a particle or cavity of fixed volume held at constant temperature, the driving

force for shape changes is the associated reduction in the total surface energy. In many crystalline solids, the

lowest energy form of a particle or cavity includes facets, and the equilibrium or Wulff shape can be fully

facetted. The Wulff theorem prescribes that the equilibrium shape of such a particle or cavity is that for

which

g g g g1

1

2

2

3

3l l l l
i

i
= = = ¼ = = constant (1)

where li  is the physical distance from the center of mass of the crystal to the ith facet measured along a

normal to the ith facet, and gi is the energy per unit area of the ith facet [11]. Surface energy anisotropy will

alter the final state of a system, and influence the driving forces and kinetics of the processes that transform

it from an initial nonequilibrium state [12, 13]. The appearance of facets can also lead to a change in the

rate-controlling mechanism.

The influence of surface energy anisotropy and facetting on the energetics and kinetics of shape

changes has become the topic of increasing attention. Bonzel, Mullins and their collaborators have examined

the effect of surface energy anisotropy on scratch smoothing behavior, and have developed elegant new

experimental methods and refined theoretical models [14-19]. Taylor, Cahn, Carter, and colleagues [20-22]

have addressed a broad range of problems involving shape changes in facetted crystals, and have provided

theoretical descriptions of shape changes controlled by both surface diffusion and by salk.

Within the past decade, methods that allow the introduction of large numbers of cavities of

controlled size and shape into single crystal substrates of controlled surface orientation and their

subsequent conversion to intragranular defects have been developed. These methods have been used

examine the high-temperature properties of surfaces and interfaces in ceramics [23-33]. Since it is possible

to generate defects with shapes that differ substantially from the equilibrium shape, arrays of such defects

can be used as a vehicle for systematic investigation of the kinetics of shape evolution. Moreover, micron-

sized pores can easily be produced by microlithographic methods, and it is expected that pores of this size
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(or smaller) are necessary to reduce the equilibration time to reasonable levels [34-36]. Thus, if pores of

such experimentally accessible sizes approach their equilibrium shape in reasonable times, then the Wulff

shape (of a large number of cavities under prescribed conditions) can be determined.

For such small intragranular cavities, surface diffusion is expected to be the dominant diffusional

process in alumina. Two treatments of the surface-diffusion-controlled shape evolution rate of fully

facetted rodlike pores have recently been presented [34, 37]. For this 2-d case, at fixed temperature, the

predicted times to equilibrate pores of fixed cross-sectional area and common initial shape in alumina

differed by a factor of »103. Errors in both models caused this large disparity.✝ Compounding this, different

geometric parameters were used to track the evolution of the system, and thus, a direct comparison of the

predictions was cumbersome.

This paper re-evaluates the two approaches to modelling surface-diffusion-controlled pore shape

evolution, and isolates the effects of different modelling assumptions on the predicted evolution rates. A

key finding is that when consistent values for the relevant materials parameters are used, these two

modelling approaches yield predictions that agree to within a factor of 1.5. This close agreement has several

important implications. The 2-d result suggests that if surface diffusion limits the evolution rate, it should

be possible (with patience) to reach near-equilibrium shapes for micron-size pores that can readily be

fabricated using microlithographic methods. It also suggests that the approximate method described in

references [37, 38] can be extended from the 2-d cases, which can easily be treated using the exact method

[34], to the more experimentally relevant 3-d cases where the exact method is extremely difficult to apply.

This is the subject of a companion paper [39], in which the predictions of the 3-d model are compared to

the results of model experiments assessing pore shape equilibration rates, and the role of ledge-producing

defects (dislocations) on evolution rates are discussed. Collectively the results of these two studies proved

useful in guiding the design of experiments aimed at determining the Wulff shape of doped and undoped

aluminas. The results of the Wulff shape studies will be reported separately [40-42].

                                                            
✝ The driving force formulation in reference [37] was incorrect. Even when this was corrected [38], and the same values of
materials parameters were used, the disparity remained large. It was subsequently found that the predicted times in Figure 8 of
reference [34] are inconsistent with the stated value of the surface diffusivity; this numerical error significantly impacts the
interpretation of the experimental results presented in reference [34]. There is also an error in Eqn. 5 of reference [34]. Details
are provided in the results section of this paper. A short note further detailing and correcting these errors is in preparation.
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Background

Modelling the kinetics of shape change for fully facetted particles and cavities by surface diffusion

involves several critical steps. These include formulating the driving force for shape changes, developing an

equation to describe the surface flux, relating this flux to a change in particle shape, and solving the

resulting differential equation that specifies the rate of shape change. In this section, we focus on presenting

two different formulations of the driving force for the shape change. One assesses the net change of surface

energy per mole of mass transferred from a receding facet to an advancing facet; this differential geometry

approach defines a chemical potential difference. The second approach assesses the free energy change

associated with surface formation per unit volume swept as a facet advances. This is the weighted mean

curvature [20], and allows one to define the chemical potential on a facet-by-facet basis.

Feature Geometry

The discussion will focus on fully facetted N-sided rodlike particles or pore channels in a solid. The

geometry of interest consists of an N-gon lying in the x-y plane that extends indefinitely in the z-direction,

as illustrated in Figure 1. Vectors lying in the x-y plane extend from an origin 0, to N points, Q 1, Q 2, Q 3, …,

Q N. These N vectors have lengths l1, l2, l3, … , l n , … , lN. Normals to these vectors passing through the

points Q 1, Q 2, Q 3, … , Q N define the facet planes. The edge lengths of the N-gon (the facet widths),

denoted e1, e2, e3, … , e n , … , eN depend upon the orientations and lengths of the N vectors, and are limited

by intersections with other adjoining facets. The facets form a convex body enclosing a cross-sectional area

Acs. The volume per unit depth ¢V  is Acs•1.

Relationships for an Equilibrium-Shape Crystal

The procedure for determining the equilibrium shape of a 3-d facetted crystal can be found in

standard reference texts [e.g., 43]. It involves minimizing the Helmholtz free energy of a body of constant

volume and numbers of moles at constant temperature. Since only shape changes are allowed, the problem

entails minimizing F = g j jj

N
A=å 1

 at constant volume where Aj  is the area of facet j, and can be solved

using the method of Lagrange multipliers. For the fully facetted 2-d crystals/cavities of interest here, ¢V  is

held constant, and a similar minimization procedure leads to a set of N equations of the form
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where Aj  is the area of facet j per unit depth, and h  is a Lagrange multiplier. One possible solution is
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which is the 2-d analog of Eqn. (1).

The procedures for defining the chemical potential of a crystal having the Wulff shape are also

available in standard texts [e.g., 43]. For a facetted crystal having the Wulff shape, the chemical potential

exceeds that of an infinite size crystal by an amount that is proportional to g j jl

m m g m g m g
l

N

N

V

l

V
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V

l1
1

1

2

2
= + = + = ¼ = +o o o (4)

where mo  is the bulk chemical potential, and V  is the molar volume. Thus, for a particle with the Wulff

shape, the ratio g j jl  plays the same role as gk  in an isotropic system, where k  is the curvature.

Relationships for a Non-Equilibrium-Shape Crystal

Eqn. (4) is valid only for a crystal having the equilibrium shape; for the Wulff shape the chemical

potential is the same on all facets.✠ A more general formulation of the chemical potential beneath a facetted

surface, applicable to non-equilibrium shape crystals and cavities, was presented by Herring [12]. The effect

of an infinitesimal displacement of a plane surface parallel to itself is considered, and leads to a definition of

an area-average potential. The further extension of this concept has led to the weighted mean curvature as a

means of defining the chemical potential of each facet. We will define the weighted mean curvature (wmc)

to be the limit of the rate of change of surface energy with respect to the volume swept as the volume swept goes to zero.❖

Following the discussion of Taylor [20] with the current sign convention, for a segment Si of a polygonal

surface, the wmc is given by,
                                                            
✠ If Eqn. (4) is used to specify the chemical potential of mass on a facet of a nonequilibrium shape particle, the facet-to-facet
chemical potential differences that are implied would lead to pathological flows, i.e., such definitions of the potential make the
Wulff shape an unstable equilibrium state, and are not pertinent for nonequilibrium cases.
❖ Taylor [20] originally defined the weighted mean curvature, wmc, as the negative of this quantity. In subsequent papers by
Cahn and Taylor [21, 22], and in this paper, the sign convention is reversed to parallel the sign convention normally used for k .
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where d ij  is +1 for a convex (positive) crystal, and -1 for a concave (negative) crystal. The term fij  is
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where

c n n n nij i j i j= × = ×r r r r
cosq (7)

and 
r
ni and 

r
n j  are the unit normals to surfaces i and j, and q  is the angle between them.

The chemical potential associated with facet j depends on the wmc of the facet, and is given by

m mj jV wmc= +o ( ) (8)

The wmc reduces to a form involving g j jl when a crystal or cavity has the equilibrium shape.

The Driving Force for Shape Changes

In general, there are two approaches to formulating the driving force for shape changes. The first

computes the free energy change associated with the transfer of mass from one facet to the other,

determines the free energy change per mole of mass transferred, and thus defines a chemical potential

difference, Dm . The second approach employs the concept of weighted mean curvature to specify the

chemical potential on each facet, e.g., m1 and m2 , and evaluates the difference in these chemical potentials,

m m1 2- , to define a driving force. In this section we apply both of these methods to the case of a stretched

square and a stretched hexagon. The resulting driving force expressions are used in the modelling to

calculate the shape change rates for these two geometries.

Stretched Square

For the rectangular cross-section illustrated in Figure 2a, the condition of constant volume per unit

depth implies Acs = 4l1l2 = constant. Letting F  represent the surface energy per unit depth of crystal in the
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z-direction, shape changes that conserve volume and involve normal displacements of the facets produce a

differential surface energy change per unit depth of crystal given by

d dl dl
l

l
dl

total
F( ) = +[ ] = -

é

ë
ê

ù

û
ú( • ) ( • )4 1 4 11 2 2 1 2 1

2

1
1g g g g (9)

This expression equals zero when the Wulff condition, Eqn. (3), is satisfied. When l2 exceeds the

equilibrium value, the term in brackets is negative, and dF  is negative when dl1  is positive.

The transfer of dn moles from a single surface of area A2 per unit depth and energy g2 to a single

surface of area A1 per unit depth and energy g1, produces a differential surface energy change

d
l

l
dlF( ) = -

é

ë
ê

ù

û
ú®2 1 2 1

2

1
12 1( • ) g g (10)

The volume per unit depth swept due to the displacement of facet 1 by an amount dl1, dV1, can be related

to the number of moles transferred, dn, and the molar volume, V , as follows

dV l dl Vdn dl
Vdn

l1 2 1 1
2

2 1
2 1

» = Þ =• •
•

(11)

Inserting this into Eqn. (10) and rearranging, the differential energy change is

d V
l l

dnF( ) = -
æ
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ö
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2
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1

g g
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The ratio of the free energy change and number of moles transferred is a chemical potential difference, and

thus, we obtain

d

dn
V

l l

F Dæ
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æ
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For the stretched square geometry, one can infer that the term involving V lg 2 2/  is associated with m1 and

the term involving V lg 1 1/  is associated with m2 . When the geometry is more complex, it is not always

obvious which of the g i il terms is associated with which facet. Only Dm2 1®  is clearly specified.
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A treatment of the driving force in terms of weighted mean curvature explicitly defines the (mean)

chemical potential of each facet. For the simple geometries under discussion here, the wmc values can easily

be assessed by examining the surface energy change per unit volume swept graphically. Figures 3a and 3b

show the surface area changes as a result of displacements d l1  and d l2 . Assessing the surface energy

changes and volume swept, it follows that the wmc of facets 1 and 2, wmc1 and wmc2, respectively, are

wmc
l

l l l
wmc

l

l l l1
2 1

2 1

2

2
2

1 2

1 2

1

1

2 1

2 1

2 1

2 1
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g d
d

g g d
d
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Applying Eqn. (8), the chemical potentials on facets 1 and 2, m1 and m2 , respectively, are

m m g m m g
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Stretched Hexagon

The geometry of the stretched hexagon, Figure 4, is slightly more complex than that of the

stretched square, and this has led to differences in the description of the geometry, and in the choice of

metric used to characterize the approach to equilibrium. For example, Acs can be defined in three ways

A l e l e l e l e e l e lcs = + = + = -2 2 41 1 1 2 1 1 2 2 2 2 2 1 (16)

where

e l l e l1 2 1 2 1
2

3
2

2

3
= - =( ) (17)

The constant Acs constraint leads to the following relationship between dl1  and dl2

dl
l l

l
dl2

2 1

1
1

2

2
= - -

(18)

The surface energy per unit depth of crystal, F , can be written,

F = = + = +
=

åg g g g gi i
i

N
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If we assume that the shape changes involve normal displacements of facets and maintain symmetry, the

differential surface energy change of unit depth of crystal in response to a shape change at constant ¢V  will

be given by

d
l
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dl dl
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When g g1 1 2 2l l= , dF  equals zero as it should. When l2 exceeds the equilibrium value, the term in

brackets is negative, and dF  is negative when dl1  is positive.

The differential change in surface energy when one transfers dn moles from the two identical

flanking surfaces of area A2 per unit depth and energy g2 to a single surface of area A1 per unit depth and

energy g1 is

d
l
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The volume per unit depth swept due to the displacement of facet 1 by an amount dl1, dV1, can again be

related to the number of moles transferred, dn, and the molar volume, V . For this geometry

dV e dl Vdn dl
Vdn

e1 1 1 1
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1
1

» = Þ =• •
•
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As a result,
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The numerator goes to zero when g g1 1 2 2l l= . The chemical potential difference goes to infinity when

2 2 1l l= ; geometrically, when this condition is satisfied, the length of facet 1, e1, goes to zero, as shown by

Eqn. (17).

The same result can be obtained by evaluating the difference in wmc of facets 1 and 2. Figures 4a

and 4b illustrate the surface area and surface energy changes as a result of displacements d l1 and d l2 ,
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respectively. For facet 1, the surface area per unit depth is e1•1, and the volume swept by a displacement d l1

is e1•1• d l1. The displacement of facet 1 by d l1increases the area of each of the inclined facets of energy g2

by an amount 2 3( ) d l1•1, resulting in a surface energy change, 4 3( ) g2 d l1•1. In addition, the

displacement decreases the length of facet 1, by an amount 1 3( ) d l1•1 at each end, resulting in a surface

energy decrease of 2 3( ) g1 dl1 •1. It follows that wmc1, is

wmc l l l l l
l l1 2 1 1 1 2 1 1
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2 1

4

3
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2

2
= -

æ
èç

ö
ø÷
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g d g d d g g
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At equilibrium, this ratio is equivalent to g 1 1l( ). The displacement of each inclined facet by an amount

d l2  extends facet 1 by an amount 2 3( ) d l2•1, and thus, the energy increase is 2 3( ) g1 d l2•1. The

volume swept is »e2•1• d l2 , and thus,

wmc l l l
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which is equal to g 2 2l( ) at equilibrium. The driving force for transfer of mass from facet 2 to facet 1 is

Dm m m g g g g g
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For both the stretched square and the stretched hexagon, the chemical potential on a facet i is affected by

the energy of the adjacent facets, g j .  The pairing of mi with the ratio g i il obscures this, and results in

relationships only valid when the crystal or cavity has the equilibrium shape.

Modelling

When a facetted crystal or a facetted cavity has the equilibrium shape, the wmc and the chemical

potential will be constant, and there is no driving force for mass transfer and shape changes. In contrast,

when the shape deviates from the Wulff shape, the wmc and the chemical potential will vary from facet to

facet on the particle or pore surface. This spatial variation in the chemical potential creates a driving force

for mass transfer that allows the system to approach the equilibrium shape, albeit asymptotically.
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For mass transport controlled by surface diffusion, the surface flux, Js, can be related to the gradient

in the chemical potential at the surface. Fick’s first law of diffusion for the surface flux (in atoms/m2•s) can

be written as

J
D

V T

d

dxs
s= -

k
•

m
(27)

where Ds  is the surface diffusion coefficient, V  is the molar volume, k is Boltzmann’s constant, and T is

absolute temperature. The local rate of mass accumulation, and thus the surface displacement rate, hinges

on the gradient in the flux. The normal velocity of a surface, Vn  can thus be expressed as

V
dJ

dx
V

D

T

d

dx
n

s
s

s s= - =
æ

èç
ö

ø÷
d d m

k
•

2

2
(28)

where d s  is the width over which diffusion is enhanced.

If the chemical potential on the facet of a nonequilibrium shape crystal were assumed constant on

the entire facet, then chemical potential discontinuities would exist at facet edges. Yu and Hackney [44]

formulated the positional dependence of the surface potential on a facet in a nonequilibrium shape crystal,

using an approach suggested by Herring [12]. When facets undergo uniform normal displacements the rate

of mass deposition or removal must be uniform on each facet. The gradient or divergence of the flux must

be constant on each facet, and it follows from Eqn. (28) that Ñ2 m  must be constant on each facet. Yu and

Hackney [44] treated the case of a stretched square evolving by surface diffusion. Generalized procedures

were developed independently by Carter et al., and presented in references [22] and [34]. If position on

facets 1 and 2 in the direction of flow is measured by the variables x and y, respectively, then for the 2-d

problems of interest, a possible general solution to the chemical potential variation across facets 1 and 2

takes the form

m ms sx c x c x c y d y d y d( ) ( )( ) ( )1
1

2
2 3

2
1

2
2 3= + + = + + (29)

where c1, c2, and c3 and d1, d2, and d3 are constants whose values are chosen to match the boundary

conditions. The average value of the chemical potential on facet i is equated to that dictated by the wmc of
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the facet, Eqn. (8). The potential and the potential gradient must be continuous at the facet edge.

Symmetry considerations provide additional boundary conditions.

For the stretched square, taking x = 0 and y = 0 as the midpoints of facets 1 and 2, respectively,
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The same general method can be applied to the stretched hexagon, however, in that case, the potential on

facet 2 is asymmetric about the midpoint; the gradient of the surface potential equals zero at the junction

point of the two inclined facets located distance l2 from the origin. These equations can then be used in

conjunction with Eqn. (28) to prescribe an exact value for the displacement rate of the facets.

This approach is relatively simple to apply to 2-d problems, but satisfying the boundary conditions

becomes very difficult when the diffusion problem is three-dimensional. Thus, a simpler approach to

estimating the rate of facet displacement, one that is more easily applied to 3-d problems was pursued.

Regardless of the form of the chemical potential gradient on a facet, the total mass arrival rate for a

facet is the sum of the mass flow rates at the facet edges. These flow rates are dictated by the potential

gradients at the facet edges. If we implicitly assume that the deposition rate is uniform on the facet, the

problem reduces to one of estimating the gradients at the facet edges. Kitayama [45] has approximated the

gradient at the facet edge as the difference in the mean potentials on the adjoining facets divided by an

“effective diffusion distance”. As a result, Eqn. (27) is applied to the edge, and modified to be

J
D

V T xs
s( ) = -®

®

®
2 1

2 1

2 1k
•

D
D

m
(31)

where Dm m m2 1 1 2® = -  represents the difference in mean potential, and Dx2 1®  is the effective diffusion

distance. The mean chemical potentials, m1 and m2  are calculated using Eqn. (8). For the stretched square,

the potential will be either a minimum or maximum at the facet centers, and either a maximum or

minimum at the facet edges, depending upon whether the facet acts a mass sink or a mass source. If the
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center-to-edge variation of potential with position is linearized, and Eqn. (8) is used to define the mean

potential, then the potential is at its mean value for facets 1 and 2 at distances l1/2 and l2/2  from the

corner, respectively. The sum of these distances is used to scale the potential difference, and is referred to as

an effective diffusion distance. (For the stretched hexagon, Dx2 1®  is ( / ) ( / )e e1 24 2+ .)

The two approaches are compared in Figure 5 for a stretched square. The parabolic potentials are

drawn, and compared with the facet-edge gradient that results when Dx2 1®  is set equal to (l1 + l2)/2. Note

that the slopes are similar, and that the quality of the agreement hinges on the choice of Dx2 1® . For the

given choice, the parabolic potential leads to a potential gradient at the facet edge that is 1.5´ that for the

“linearized” gradient. As a result, the times predicted by the linearized gradient method for a given change

of shape will be 1.5´ the value obtained by the more exact method. Similar comparisons for the case of a

stretched hexagon, with the effective diffusion distance taken to be ( / ) ( / )e e1 24 2+  lead to a factor of 1.5

difference in the edge fluxes, with the continuous potential again yielding the higher evolution rate.

The calculations of the displacement rates for facet 1 for both the stretched square and the

stretched hexagon involve the following steps. The infinitesimal volume change of a single facet of type 1,

dV1, during an infinitesimal time interval dt is expressed as

dV A dl J L dts s1 1 1= = • • • •d W (32)

where A1 is the area per unit depth of facet 1, ds is taken here to be equal to W1/3 where W is the atomic

volume, and L is the total common or shared edge length between the interacting facets. The product d s L•

represents the area through which diffusion is occurring. This equation can be rearranged and combined

with Eqn. (31) to yield the following differential equation for the displacement rate of facet 1

dl

dt

J L

A

D

V T

L

A x
s s s1

1

4 3

1

2 1

2 1
= = - ®

®

• • •
• •

/d mW W D
Dk

(33)

For the stretched square, with Dm2 1®  given by Eqn. (13), Dx2 1®  set equal to (l1 + l2)/2, and l2 set

equal to Acs/4l1, the potential gradient can be written as
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The potential gradient at the corner ( x l= 2  and y l= - 1) implied by Eqn. (30) is 1.5´ this value. For unit

depth of the stretched square, taking A1 = 2l2•1, L = 2, and using Eqn. (34), Eqn. (33) takes the form
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Letting Req = ( )g g2 1/  this equation can be re-expressed as
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Solving for dt and integrating leads to
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where l t
1

0( ) is the value of l1 at time t0 and l t
1
( ) is the value of l1 at time t. Since Acs is homogeneous of

degree 2, a uniform enlargement of the particle by a factor l increases Acs by a factor l2 , and thus, the

evolution time t scales with l4  as would be expected from the Herring scaling laws [46].

For the case of the stretched hexagon, Dm2 1®  is given by Eqn. (26), and the effective diffusion

distance is ( / ) ( / )e e1 24 2+ . Using Eqn. (17), the potential gradient can be written as
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If we solve Eqn. (29) for the stretched hexagon, and evaluate the potential gradient at the corner we again

find that it is 1.5´ that obtained with a linearized potential. For a segment of crystal of unit depth, taking

A1 = e1•1, L = 2, using Eqn. (17) to re-express e1, and Eqn. (16) to eliminate l2, Eqn. (33) takes the form
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With Req = ( )g g2 1/ , the integrated form of this expression can be written as
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The predicted times are a factor of 1.5 greater than those predicted for the parabolic potential.

Results

In this section we provide the results of three sets of calculations performed using values of

materials parameters specific to aluminum oxide. These calculations examine the effect of 1) crystal or

cavity size and shape, 2) temperature, and 3) the surface energy anisotropy on shape relaxation kinetics.

Effect of Crystal (Cavity) Volume and Shape on Relaxation Rates

The results of the modelling for both the stretched square and stretched hexagon geometry were

used to calculate aspect ratio-time trajectories appropriate to alumina. For this purpose, the temperature

was fixed at 1600°C, and an “average” value of the surface diffusivity Ds of 1.82 ´ 10-11 m2/s was assumed.

The relevant volume W was taken to be 2.11 ´ 10-29 m3 [47], and the surface thickness ds was assumed to

be of the order of W1/3. The surface energies, g 1 and g 2 , were assumed to be equal and 1 J/m2. The initial

value of Ra (=w/d) was taken to be 15. Figure 6 plots the times required to reduce the aspect ratio Ra from

15 to the indicated values of Ra for both a stretched hexagon and a stretched square of fixed cross-sectional

area, Acs = 10-11 m2. Aspect ratio–time trajectories for both the linearized and parabolic potentials are

shown. The curves terminate when the value of Ra reaches 1.01 times its equilibrium value Req. The anneal
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time required for intermediate changes in Ra, e.g., from 10 to 5, is determined by assessing the difference in

anneal time corresponding to these values of Ra.

Since the time to reach a given value of Ra from a common initial value is proportional to Acs
2 , the

results predict that at 1600°C, features with a cross-sectional area of the order of 1 µm ´ 1 µm should reach

values of Ra of 1.01•Req in 8 h or less. Using the values for Ds (10-10 m2/s) and W (6.6 ´ 10-29 m3) assumed

by Choi et al. [34], the predicted relaxation times would be reduced by a factor »25. Submicron-sized

features are not necessary to achieve near-equilibrium shapes at this temperature. Similar size scaling of the

results in Figure 6 indicates that pores of the size examined by Choi et al. [34] (Acs £ 10-13 m2) should reach

near-equilibrium shapes within only a few minutes at 1600°C if surface diffusion were rate-limiting. The

relaxation kinetics suggested by Figure 8 in reference [34] imply that »50 h anneals would be required for

shape equilibration of cavities with Acs = 10-13 m2; this result is clearly inconsistent with the stated values

of materials parameters.✻

A comparison of the evolution kinetics of the stretched square and the stretched hexagon suggest

that the relaxation rates are not particularly sensitive to the details of the crystal or cavity shape. This

suggests that the more global geometric parameters such as the w/d ratio and the cross sectional area, that

define the shape and volume are the key variables, and an approximate shape can be used to provide

reasonable estimates of the evolution rate. At least in systems like alumina, where the uncertainty in the

diffusivity is quite large, the details of the facet structure are not critical for kinetic modelling.

It is also the case that the details of the potential gradient have only a minor effect on the predicted

evolution rates. The displacement rate of a facet hinges on the volume arrival rate, and this is dictated by

the potential gradient at the facet edge. For reasonable choices of the effective diffusion distance, the

potential gradient predicted using the difference in the mean potentials is close to that obtained when a

parabolic potential is assumed. For both the stretched square and stretched hexagon, the linearized gradient

                                                            
✻ The numerical error reflected in Figure 8 also impacts the interpretation of the experimental observations in reference [34].
The persistence of non-equilibrium shapes in such small facetted cavities suggests that in the absence of ledge-producing defects
such as dislocations, the evolution rates are extremely sluggish, and not controlled by surface diffusion. Experimental results
presented in the companion paper [39] also support this viewpoint. Recent calculations by Mullins and Rohrer [48] suggest that
the barrier to the nucleation of new facet layers is extremely large for facets above a limiting size of »1 nm, making
particles/cavities without alternative sources of ledges (dislocations) unable to adjust their shape.
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and parabolic potential yield results that differ by only a factor of 1.5. This close agreement suggests that

the linearized approach can be used to provide reasonable estimates in 3-d problems where solutions that

are based on a continuously varying potential on the surface are more difficult to obtain.

Effect of Temperature

The time to reach a particular state, or to produce a particular shape change scales inversely with

the diffusion coefficient. In assessing the surface diffusion data available for alumina, there is considerable

scatter both in the magnitude of the diffusivity at fixed temperature, and in the apparent activation energy.◆

For the present purposes, an average value for the surface diffusivity is assumed, and the temperature

dependence of the average surface diffusivity is calculated using:

D Ds
Q T Ts= =-( ) -( )

o exp • exp ( )/ /R R 2m / s2360 506000 (41)

with the activation energy Qs given in joules/degree•mole.

To illustrate the effect of temperature, the results for the two treatments of the stretched hexagon

are compared in Figure 7. An initial Ra value of 15 is assumed, and Acs is set equal to 10-11 m2. Three

temperatures are considered, 1600°C, 1800°C, and 2000°C. The predictions indicate that although a

particle or pore of order a few microns in size would not equilibrate in an experimentally accessible time at

1600°C, such a feature is expected to reach Ra » 1.01•Req in approximately one day at 1800°C. At the

higher temperatures, an even broader size range of features becomes accessible, and it may be possible to

examine scaling law behavior directly.

Effect of Surface Energy Anisotropy

In modelling the temporal evolution of particle and pore shapes, the possibility that different

crystal faces would have different surface energies was incorporated. Previously, in considering the effects of

size, shape and temperature, the two energies, g 1 and g 2 , were set equal. Under these conditions, Req is

unity for the stretched square. To examine the effects of surface energy anisotropy, two sets of calculations

were performed for the stretched square. In both, the temperature was fixed at 1600°C, and Acs was set

                                                            
◆ In the scratch smoothing study of Bennison and Harmer [47], an error was made in converting previously reported values of Ds
to the dsDs format and units of m3/s. Prior data is a factor of 100 too high in their Figure 1. When this error is corrected, the
data obtained in their study agrees much more closely with average values in prior work.
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equal to 10-11 m2. A range of Req values, from 0.5 to 2.0, was then considered. In one calculation, the value

of g 1 is held fixed at 1 J/m2, and changes in Req are accommodated by changing the value of g 2 ; in this case,

the average surface energy of the equilibrium shape crystal increases as Req increases. The results of this

calculation are shown in Figure 8a. In the second calculation, the values of both g 1  and g 2  are adjusted to

accommodate the change in Req, but in a way that maintains the average surface energy of the equilibrium

shape crystal constant at 1 J/m2. The results of this calculation are presented in Figure 8b. In both figures,

the curves terminate when Ra reaches 1.01•Req.

When the effect of varying Req is assessed, one concludes that the details of the anisotropy have

only a minor influence on the time required to reach the near-equilibrium shape. When the average value of

the surface energy is allowed to vary, Figure 8a, a factor of four change in Req results in only a factor »2

change in the time at which Ra reaches 1.01•Req. When Ra ³  3, the predicted times to reach a given Ra

value vary by less than or equal to a factor of »1.5. When the average value of g is held constant, the times

at which Ra reaches 1.01•Req differ by only a few percent. In this case, when Ra ³  3, the times required to

achieve the associated shapes differ more substantially, varying by a factor of up to »3. Nonetheless, the

results imply that if measured values of Ra are interpreted using a model that assumes the surface energies

of all facets are equal, this assumption would introduce less than a 2´ error into the inferred value of Ds.

Since measurements of relative surface energies in metallic systems [49-52], and recent measurements of

relative surface energies in undoped [34, 40, 45] and doped aluminas [41, 42, 45] suggest that actual

variations in g  are much smaller than considered in the calculation, such variations are not likely to be a

major source of error in estimates of diffusivities. In contrast, unrecognized changes in the rate-limiting

transport process from diffusion to salk, and assessment of morphology changes that involve growth or

decay of perturbations on a stable facet can lead to significant errors in estimates of the surface diffusivity.

Summary and Conclusions

Models have been developed that allow calculations of the times required to adjust the shape of

facetted rodlike particles and facetted pore channels by surface diffusion. The modelling has used
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differential geometry and weighted mean curvature based descriptions of the driving force. Two different

methods of describing the potential gradients driving the surface flux have been presented and compared.

The method based on a continuously varying potential is more rigorous, but unfortunately also more

difficult to apply to 3-d problems. It was thus of interest to determine the magnitude of the errors that arise

when simpler approximations of the driving force, approximations that are more easily applied to 3-d

problems, are used in modelling the behavior.

The results suggest that the crystal/cavity size and the temperature, through its influence on the

surface diffusivity, are the key factors influencing the rate of pore shape evolution. The initial shapes

considered in the modelling deviate significantly from the Wulff shape. Under these conditions, although

the details of the feature shape, the formulation of the chemical potential gradient, and variations in the

details of the surface energy anisotropy do influence the evolution times, the changes owing to these factors

tend to be small, of the order of a factor of three or less. As a result, the general features of the evolution are

not affected significantly by the subtleties of the initial shape, approximate treatments of the potential

gradient, or the ultimate Wulff shape.

Significant simplifications have been made in the modelling. The surface diffusivity is assumed to

be isotropic; differing diffusivities on adjoining facets introduce a discontinuity in the potential gradient at

the facet edge [44]. The analysis does not address the nucleation of new facets, merely the displacement of

those originally present. Perhaps most importantly it implicitly assumes that shape relaxation in fully

facetted systems can be surface diffusion limited, and thus, that a sufficiently high ledge density exists. A

reassessment of the experimental results of Choi et al. [34] suggests this may not be valid. The role of the

atomistic structure of the surfaces undergoing displacements and the role of ledges in crystal growth was

first discussed in the work of Burton, Cabrera and Frank [53] and similar issues relevant to shape

equilibration constitute the focal point of analyses by Ozdemir and Zangwill [54], Bullard and Searcy [55]

and Mullins and Rohrer [48].

The most compelling assessment of the importance of surface structure on the evolution of a

facetted crystal or pore would be obtained by comparing experimental observations with modelling results.

The close agreement between the linearized gradient and parabolic potential based models has encouraged
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efforts to extend the former approach to the 3-d geometries that can be generated using microfabrication

methods. Isolated feature with simple nonequilibrium shapes offer several important experimental

advantages over the 2-d feature geometries treated in this paper, notably the absence of complications due

to Rayleigh instabilities. The extension of the linearized-gradient approach to shape evolution of isolated

nonequilibrium shape pores, and the results of a parallel experimental study are presented in a companion

paper [39]. It will be demonstrated that a wide range of evolution behavior is encountered for cavities of

identical volume and initial aspect ratio but differing crystallographic orientation. The results suggest that

in many of these cases, consideration of surface attachment limited kinetics, and ledge availability is

essential.
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Figure Captions:

Figure 1 Parameters in a geometric description of a facetted solid rod or a facetted pore channel.

Figure 2 Illustration of the two geometries considered, and parameters used in the modelling.

The geometry in (a) is referred to in the text as a stretched square, while that in (b) is

termed a stretched hexagon.

Figure 3 Illustration of the surface area and surface energy changes associated with the

morphological evolution of a stretched square. When these surface energy changes are

divided by the volume swept, the wmc of the displaced facets is determined.

Figure 4a Illustration of the surface area and surface energy changes associated with the

morphological evolution of a stretched hexagon. When the surface energy changes

caused by the displacement of facet 1 are added and then divided by the volume swept,

the wmc of facet 1 is determined.

Figure 4b Illustration of the surface area and surface energy changes associated with the

morphological evolution of a stretched hexagon. The wmc of facet 2 is determined to

be g1/l1.

Figure 5 Comparison of the potential gradients at the edge of a stretched square when a

parabolic potential (pp) is assumed, and when the mean chemical potential difference

between adjacent facets is linearized (lp).
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Figure 6 Comparison of the predicted time dependencies of the aspect ratio at 1600°C for

stretched squares and stretched hexagons of fixed size.

Figure 7 Plot of the predicted effect of temperature on the shape equilibration kinetics of a

stretched hexagon.

Figure 8 Predicted effect of surface energy anisotropy on the shape equilibration kinetics of a

stretched square. In (b), the values of both g 1 and g 2  are adjusted to accommodate the

change in Req, but the average surface energy of the equilibrium shape crystal is

maintained constant at 1 J/m2.
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Figure 1 Parameters in a geometric description of a facetted solid rod or a facetted pore channel.


